
5
Topological insulators Part III: tight-binding models

5.1. tight-binding models

Tight-binding models are effective tools to describe the motion of electrons in solids. Here, we assume that the system is a discrete lattice and
electrons can only stay on the lattice site. The kinetic energy is included by allowing electrons to hop from one site to another.

5.1.1. Example 1: a one-band model

Lets consider a 1D lattice with one atom per unit cell. For each atom, we consider only one quantum state. The creation (annihilation) operator

ci
† (ci) creates and annihilates one particle on site i. The non-interacting Hamiltonian can be written as

(5.1)H = -
ij
tij ci

† c j + tji c j
† ci +

i
Vi ci

† ci

The first term ij tij ci
† c j  describes hoppings from site j to i. The second term ij tji c j

† ci  describes the hopping from i to j. The last term is the

potential  energy,  which  tells  us  how much energy  we  need  to  put  an  electron  on  each  site  Vi.  Because  the  lattice  contains  only  one  type  of
atoms, Vi = constant (i.e. translational symmetry). Because H  is Hermitian, we find that tij = tji

* and Vi is a real number.

Proof:

(5.2)H† = H

(5.3)-
ij
tij ci

† c j + tji c j
† ci +

i
Vi ci

† ci†
= -

ij
tij ci

† c j + tji c j
† ci +

i
Vi ci

† ci

(5.4)-
ij
tij* c j

† ci + tji ci
† c j +

i
Vi
* ci

† ci = -
ij
tij ci

† c j + tji c j
† ci +

i
Vi ci

† ci

By comparing the two sides, we find that tij
* = tji and Vi = Vi

*.

Therefore, we can simplify the Hamiltonian

(5.5)H = -
ij
tij ci

† c j + tij
* c j

† ci + V 
i
ci

† ci = -
ij
tij ci

† c j + tij
* c j

† ci + V N

In the last term, N =i ci
† ci is the total number of electrons in the system. Because V N  is a constant, this term just shifts the total energy by a

constant, and thus has no other physical contribution (can be ignored if we are not interested in the total energy). 

For tight-binding models, a typically approximation is to assume that electrons can only hop to its nearest-neighbor sites. In reality, long-range
hopping  is  allowed,  but  their  amplitudes  are  small  (decay  exponentially  as  distance  increases).  Therefore,  in  many  cases,  we  just  need  the
nearest-neighbor hopping terms to describe the systems. Due to the translational symmetry, all nearest-neighbor hoppings shall have the same
hopping strength. If we assume that this hopping strength is a real number t, the Hamiltonian is

(5.6)H = -t ij ci
† c j + c j

† ci = -t 
i
ci

† ci+1 + h.c.

Here, ij implies that i and j must be neighbors. On the right hand side, h.c. means Hermitian conjugate. Notice that the second term is in fact
the Hermitian conjugate of the first term, so we just use h.c. to represent it.
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Fourier series: typically, Fourier series is used to describe a periodic function in the real space, which will have a describe set of wave vectors
in the k space. Here, it is the opposite. We have a continuous k-space and it is periodic (the Brillouin zone),  but the real space is discrete.

(5.7)ck =
a

2 p


i
ci ‰-Â k x

(5.8)ci =
a

2 p


BZ
„ k ck ‰

Â k x

Because ci, c j
† = dij, it is easy to check that

(5.9)

ck, ck'
† =  1

2 p a


i
ci ‰-Â k xi ,

1

2 p a


j
c j

† ‰Â k' x j =


i, j

ci, c j
† 1

2 p a
‰-Â k xi ‰Â k' x j =

i, j
di, j

1

2 p a
‰-Â k-k' xi =

i

1

2 p a
‰-Â k-k' i a = a dk - k ' a = dk - k '

If we know ck, ck'
† = dk - k ', we can also show that  ci, c j

† = dij.

(5.10)

ci, c j
† =  1

2 p  a


BZ
„ k ck ‰

Â k xi ,
1

2 p  a


BZ
„ k ' ck'

† ‰-Â k' x j =

1

2 p a


BZ
„ k 

BZ
„ k '  ck, ck'

† ‰Â k xi ‰-Â k' x j =
1

2 p a


BZ
„ k 

BZ
„ k ' dk - k ' ‰Â k xi ‰-Â k' x j =

1

2 p a


BZ
„ k ‰Â k xi-x j = dij

Hamiltonian in k-space We can transfer the Hamiltonian into the k-space. In real space, it looks like

(5.11)H = -t 
i
ci

† ci+1 + h.c.

The first term is

(5.12)


j
c j

† c j+1 =
j

1

2 p a


BZ
„ k ck

† ‰-Â k a j
1

2 p  a


BZ
„ k ' ck' ‰

Â k'  j+1 a =


j

1

2 p a


BZ
„ k 

BZ
„ k ' ck

† ck' ‰
Â k' a ‰-Â k'-k a j = 

BZ
„ k 

BZ
„ k ' ck

† ck' ‰
Â k' a dk - k ' = 

BZ
„ k ck

† ck ‰
Â k a

The second term is the Hermitian conjugate of the first term, so

(5.13)h.c. = 
j
c j

† c j+1†
= 

BZ
„ k ck

† ck ‰
Â k a

†

= 
BZ
„ k ck

† ck ‰
-Â k a

(5.14)H = -t 
i
ci

† ci+1 + h.c. = -t 
BZ
„ k ck

† ck ‰
Â k a - t 

BZ
„ k ck

† ck ‰
-Â k a = -2 t 

BZ
„ k ck

† ck cos k a = 
BZ
„ k -2 t cos k a ck

† ck

For a solid, we know that the total energy of electrons (ignore interactions) is

(5.15)E =
n 

BZ
„ k enk nnk

where n sums over all bands, enk  is the dispersion relation for band n and nnk is the occupation number for the Bloch wave state in band n
with momentum k. In second quantization, this formula implies that the Hamiltonian is

(5.16)H =
n 

BZ
„ k enk gn,k

† gn,k

Here, gn,k
† is the creation operator for a Bloch wave yn kr = un kr ‰Â k r. If we compare this formula with the tight-binding Hamiltonian (in k-

space),  we  find  immediately that  the  tight-binding  model  we  considered  here  has  only  one  energy  band.  And  our  ck
†  operator  is  in  fact  the

creation operator for Bloch waves. And the dispersion relation for this band is ek = -2 t cos k a. Notice that ek  is a periodic function of k  with
periodicity 2 p a, which is exactly what we expect for Bloch waves.

5.1.2. Discrete Fourier transformation and Fourier series
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In the formula above,  we treat  k  as a continuous variable.  In many cases,  it  is  useful to treat  k  as discrete values (where  „ k  turns into k).

Here, we briefly discuss about the discrete Fourier transform. Consider a discrete function fi, where i = 1, 2, 3 …N marks different lattice site.
In addition, we assume the periodic boundary condition fN+i = fi. We can define

(5.17)f
è

k =
1

N


j
f j ‰-Â k a j

where a is the lattice constant and j marks different lattice sites.

And it is easy to prove that

(5.18)f j =
1

N


k
f
è

k ‰
Â k a j

Same as j, the wave vector k here is also a discrete variable. This is because fN+i = fN  (our system has a finite size)

(5.19)f j+N =
1

N


k
f
è

k ‰
Â k a j+ a N  =

1

N


k
f
è

k ‰
Â k a j ‰Â k a N

(5.20)f j =
1

N


k
f
è

k ‰
Â k a j

If we compare the two equations, we find that ‰Â k a N =1, which implies

(5.21)k =
2 pm

N a
=

2 pm

L

Here L = N a is the size of the system. For infinite systems, L Ø¶, the discrete sum k turns into an integral  „ k.

Same as j, k also have a periodicity, and the periodicity is also N . This periodicity is just the Brillouin zone.

Define km = 2 pm L and by definition,

(5.22)f
è

km
=

1

N


j
f j ‰-Â km a j =

1

N


j
f j ‰

-Â  2 p

N a
m  a j =

1

N


j
f j ‰

-Â
2 p

N
m j

For km+N , by definition

(5.23)f
è

km+N
=

1

N


j
f j ‰-Â km+N a j =

1

N


j
f j ‰

-Â  2 p

N a
m+N  a j =

1

N


j
f j ‰

-Â
2 p

N
m j ‰-Â 2 p j

Because j is an integer, the factor ‰-Â 2 p j = 1. Therefore

(5.24)f
è

km+N
=

1

N


j
f j ‰

-Â
2 p

N
m j = f

è
km

As a result, we can limit the value of m to be -N 2 § m < N 2. If m is not in this range, the value of f
è

km
 can be obtained using the periodic

condition f
è

km+N
= f
è

km

(5.25)m = -
N

2
, -

N

2
+ 1, …

N

2
- 1,

For the wave vector k, this means that 

(5.26)f
è

k+2 pa = f
è

k

So, we can confine the value of k  into the range of -p a § k < p a, which is the first Brillouin zone. For k  outside the first Brillouin zone, we

can find the corresponding f
è

k using the periodicity f
è

k+2 pa = f
è

k

(5.27)k = -
p

a
, -

p

a
+ 1μ

2 p

L
, -

p

a
+ 2μ

2 p

L
, …

p

a
-

2 p

L
,

Two useful Identities:
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(5.28)
1

N


k
‰Â k a j ‰-Â k a j' = d j, j'

(5.29)
1

N


j
‰Â k a j ‰-Â k' a j = dk,k'

5.1.3. Example 2: a two-band model in 1D

Now, let us consider a slightly more complicated situation, i.e. a 1d chain formed by two different types of atoms a and b).

(5.30)H = -t 
i
ai

† bi + bi
† ai+1 + h.c. + Va 

i
ai

† ai + Vb 
i
bi

† bi

Here, the position of a sites in the jth unit cells is

(5.31)r = aμ j + ra

and the position of b sites in the jth unit cells is

(5.32)r = aμ j + rb

where, a is the lattice constant (the size of a unit cell)

Discrete Fourier transform (as discussed in the previous section)

(5.33)ak =
1

N


i
ai ‰Â k x

(5.34)ai =
1

N


k
ak ‰

-Â k x

(5.35)bk =
1

N


i
ai ‰Â k x

(5.36)bi =
1

N


k
ak ‰

-Â k x

Therefore, we know that

(5.37)


j
a j

† b j =
j

1

N


k
ak

† ‰-Â k a j+ra 1

N


k'
bk' ‰

Â k' a j+rb =
1

N


k


k'
ak

† bk' j
‰-Â k a j+ra ‰Â k' a j+rb =


k


k'
ak

† bk'

1

N


j
‰-Â k-k' a j ‰-Â k ra ‰Â k' rb =

k


k'
ak

† bk' dk,k' ‰
-Â k ra ‰Â k' rb =

k
ak

† bk ‰
Â k rb-ra

This conclusion is generic. In k-space, hoppings from b to a result in a term in Hamiltonian  k ak
† bk  k rbra. The phase factor here is

determined by how far the electron hop, i.e. rb - ra. If we apply the same conclusion to the hopping from a to b, we find immediately that 

(5.38)
j
b j

† a j+1 =
k

bk
† ak ‰

Â kra-rb

If rb - ra =
a

2
,

(5.39)
j
a j

† b j =
k
ak

† bk ‰
Â k a2

(5.40)
j
b j

† a j+1 =
k

bk
† ak ‰

Â k a2

For the potential term, we also know that

(5.41)
i
ai

† ai =
k

ak
† ak

and
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(5.42)
i
bi

† bi =
k

bk
† bk

Therefore, in the k-space, the Hamiltonian looks like

(5.43)

H = -t 
k
 ak

† bk ‰
Â k a2 + bk

† ak ‰
Â k a2 + bk

† ak ‰
-Â k a2 + ak

† bk ‰
-Â k a2 + Va 

k
ak

† ak + Vb 
k

bk
† bk =

-2 t 
k
 ak

† bk cos
k a

2
+ bk

† ak cos
k a

2
+ Va ak

† ak + Vb bk
† bk

We can write it in a matrix form:

(5.44)H =
k

ak
†, bk

†
Va -2 t cos k a

2


-2 t cos k a

2
 Vb

 ak

bk


For any tight-binding models with two quantum states per unit cell, the Hamiltonian can be written in terms of a two-by-two matrix in
the k space:

(5.45)H =
k

ak
†, bk

† Hk  ak

bk


where H is a 2×2 Hermitian matrix as a function of k. It  is called the kernel of the Hamiltonian. Because Hk contains all the information of
the  Hamiltonian  H ,  it  is  often  called  the  Hamiltonian  in  literature.  However,  it  is  important  to  keep  in  mind  that  Hk  is  only  part  of  the

Hamiltonian.  The  Hamiltonian  H  must  be  gauge  invariant,  but  Hk  is  not.  For  example,  if  we  change  a† Ø a† ‰Â f,  the  Hamiltonian  H  is
invariant, but the kernel Hk is NOT.

For the model considered here,

(5.46)Hk =
Va -2 t cos k a

2


-2 t cos k a

2
 Vb

For more generic cases, if one have m quantum states per unit cell, H(k) will be a m¥m Hermitian matrix.

When we have a  matrix,  we know what  to  do.  We need to  find  the  eigenvalue  and eigenfunctions  of  the  Hamiltonian,  i.e.  diagonalizing  the
matrix. The next two sections discuss the physical meanings of the eigenvalues and eigenvectors of Hk.

5.1.4. Eigenvalues of Hk
The eigenvalues of Hk give us the dispersion relations. At each k point, one can define a unitary transformation

(5.47) ck

dk
 = Uk

-1 ak

bk


(5.48) ck
† dk

†  =  ak
† bk

†  Uk

where Uk
-1 = Uk

†

(5.49)H =
k
ck

†, dk
† Uk

+ H Uk ck

dk


If we choose Uk such that Uk
 H Uk is a diagonal matrix, 

(5.50)Uk H Uk
-1 =  ec 0

0 ed


Then, the Hamiltonian becomes

(5.51)H =
k

ck
†, dk

†  ec 0
0 ed

  ck

dk
 =

k
eck ck

† ck +
k
edk dk

† dk

We know that using Bloch waves (which are eigenstates of the Hamiltonian), the total energy is

(5.52)E =
k,m

emk nmk =
k
e1 n1k +

k
e2 n2k +

k
e3 n3k + …

where emk is the dispersion relation for the mth band and nmk is the occupation number for the quantum state in the mth band with momen-
tum k. Therefore, in terms of Bloch waves, the Hamiltonian should take the form:
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(5.53)H =
k
e1k g1,k

† g1,k +
k
e2k g2,k

† g2,k +
k
e3k g3,k

† g3,k + …

where gn,k
†  is the creation operator for a Bloch wave in band n at momentum k. If we compare this formula with Eq. 5.51, we find that in this

model we get two energy bands. ck
† creates a Bloch wave with momentum k in one of the bands. dk

† creates a Bloch wave with momentum k in

the other band. For the bands created by ck
†, its dispersion relation is eck, while the other hand has a dispersion relation edk.

For the problem we considered here, the dispersions are

(5.54)ec =
Va + Vb

2
- 2 t cos

k a

2
2
+

Va - Vb

2

2

(5.55)ed =
Va + Vb

2
+ 2 t cos

k a

2
2
+

Va - Vb

2

2

which are the eigenvalues of the matrix Hk.
If we have a model with m orbitals per unit cell, Hk would be a m¥m matrix. This matrix will have m eigenvalues, which results in a

m-band model and each eigenvalue enk is the dispersion relation for one of the bands.

Bottom line: eigenvalues of H(k) tell us the dispersion relation.

5.1.5. Eigenvectors of Hk
The eigenvectors Hk gives us the Bloch waves.

Let’s start from the two band model discussed above as an example. Here, the two-by-two matrix Hk has two eigenvalues, eck and edk. For
each eigenvalue, the corresponding eignevector is a 2-component vector:

(5.56)H v-
ak

v-
b k = ec

v-
ak

v-
b k

(5.57)H v+
ak

v+
b k = ed

v+
ak

v+
b k

It can be easily checked that

(5.58)ck
† = v-

ak ak
† + v-

bk bk
†

(5.59)dk
† = v+

ak ak
† + v+

bk bk
†

We know that a† and b† are the creation operators for plane waves (because they come from Fourier transformations) and we also know that ck
†

and dk
† create Bloch waves. The relation between plane waves and Bloch waves is

(5.60)yn,kx = un, kx
‰Â k x

N

So, the coefficients v≤
a and v≤

bk here are in fact the discrete version of un, kx.
Bottom line: eigenvectors of H(k) tell us un, k.

We have learned that the Berry connection Ank is defined as

(5.61)An

Ø
= -Â un,k “

k
Ø un,k

For continuous models, this formula means

(5.62)An

Ø
= -Â „ x un, kx* “

k
Ø un, kx

For lattice models (tight-binding models)
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(5.63)A-

Ø
= -Â  v-

ak* v-
bk* “

k
Ø

v-
ak

v-
b k

(5.64)A+

Ø
= -Â  v+

ak* v+
bk* “

k
Ø

v+
ak

v+
b k

In general, for a m band model, where Hk is a mμm matrix, each of the eigenvector gives us the Bloch wavefunction for one of the m bands.
We can use each eigenvector to compute the Berry connection, the Berry curvature and the Chern number for that band

Bottom line: the eigenvectors are Bloch wave functions.

5.1.6. Summary
† The key properties of a tight-binding model is coded in Hk, which is a mμm Hermitian matrix. Each component is a function of k. (In 

other words, Hk is a matrix function of k.)

† The eigenvalues if H (as a function of k) gives the band structure (the dispersion relation) for each bands enk with n = 1, 2, …m

† The eigenvectors as a function of k gives the Bloch wave: un,ka, where n=1,2,…, m is the band index and a=1,2…m marks different site 

in a unit cell.

† Using these un,ka, we can define the Berry connection, Berry curvature and the Chern number. Just replace the integral in the real space 

by summing over a = 1 …m

Before  80s,  people  stop  at  step  #2  (computing  the  eigenvalues),  without  calculating  the  eigenvectors.  This  is  because  eigenvectors  are  the
wavefunction, which cannot be measured directly in experiments. After the discovery of topological insulators, physicists realized that although
the  wavefunction  can  not  be  measured  directly,  it  contains  the  topological  information,  which  is  a  physical  observable  (e.g.  the  Hall
conductivity).

5.1.7. One band model

In a one-band model, the eigenvector is trivial,  which is just identity. Therefore, the Berry connection An

Ø
= -Â  „ x un, kx* “

k
Ø un, kx  must

be trivial An

Ø
= 0. This tells us that a one-band model can never show quantum Hall effect. We need at least two bands. In fact, one can prove

that the total Chern number summing over all bands must be zero.

5.2. an example of a topologically nontrivial insulator

Let’s consider a 2-band model, whose kernel is

(5.65)Hk = -2 t cos kx - 2 t cos ky - m Dsin kx - Â sin ky
Dsin kx + Â sin ky 2 t cos kx + 2 t cos ky + m

Here, we assume D>0 and t>0 and -4 |t|<m<4 |t|. In real space, this Hamiltonian corresponds to a square lattice and on each site there are two
quantum states. Please notice that here I use m to refer to a control parameter, which is NOT the chemical potential.

5.2.1. Two-band models and Pauli matrices

For any two-band models, H is a two-by-two Hermitian matrix. For a two-by-two Hermitian matrix, one can always separate it into the identity
and Pauli matrices I , and si

(5.66)H = H0k I + Hxksx + Hyksy + Hzksz

where H0k, Hxk, Hyk and Hzk are real functions of k. If we define HØ k = Hxk, Hyk, Hzk, we find that

(5.67)H = H0k I + HØ k ÿsØ

This Hamiltonian is rather similar to a spin S=1/2 under magnetic fields.

(5.68)H = constant + m B
Ø
ÿs
Ø

For the case studied here,

(5.69)H0k = 0
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(5.70)Hxk = D sin kx
(5.71)Hyk = D sin ky
(5.72)Hzk = -2 t cos kx - 2 t cos ky - m

The eigenvalues of H are

(5.73)E≤ = H0k ≤ HØ k = H0k ≤ Hxk2 + Hyk2 + Hzk2

This is pretty much the same as the spin system, where the eigen-energies of the are

(5.74)E = constant ≤ m B
Ø

For a two band model, the top band has energy E+ ¥ H0, while the lower band has E- § H0. The energy gap between the two bands is:

(5.75)Dk = E+k - E-k = 2 HØ k

As long as H k  0, the two band will not cross with each other. Let’s now focus on the lower band E-), its eigenvector is

(5.76)uI
-k = 1

N I
Hzk - HØ k
Hxk + ÂHyk

This wavefunction is singular if Hxk = Hyk = 0 and Hz > 0,

(5.77)uI
-k = 1

N I
Hz - HØ k

Hxk + ÂHyk
=

1

N I
Hz - Hzk2

0
=

1

N I
Hz - Hzk

0
=

1

N I  0
0



This is indeed a problem for the Hamiltonian shown above. At kx = ky = p.

(5.78)H0k = 0

(5.79)Hxk = D sin kx = 0

(5.80)Hyk = D sin ky = 0

(5.81)Hzk = -2 t cos kx - 2 t cos ky - m = 4 t - m > 0

Remember that we assumed m < 4 t. In fact, there is another way to write down the same eigenvector (i.e. a phase shift)

(5.82)uII
-k =

1

N I
Hz - HØ k

Hxk + ÂHyk
μ

Hz+ HØ k
Hxk+ÂHyk

Hz+ HØ k
Hxk+ÂHyk

=
1

N II

-Hxk2-Hyk2

Hxk+ÂHyk

Hz + HØ k
=

1

N II

-Hxk + ÂHyk
Hz + HØ k

The two wavefunctions uI
-k and uII

-k differ by a phase

(5.83)uII
-k = uI

-k ‰Â fk
where 

(5.84)‰Â fk =

Hz+ HØ k
Hxk+ÂHyk

Hz+ HØ k
Hxk+ÂHyk

This  new  wavefunction  is  well  defined  at  Hxk = Hyk = 0  and  Hzk > 0.  However,  it  is  NOT  well  defined  at  Hxk = Hyk = 0  and

Hzk < 0. There, we find

Phys620.nb  77



(5.85)uII
-k =

1

N II

-Hxk + ÂHyk
Hzk + HØ k =

1

N II
0

Hzk + Hzk2
=

1

N II
0

Hzk + Hzk =
1

N II
0

Hzk - Hzk = 0

For the Hamiltonian shown above, the origin is such a point. kx = ky = 0

(5.86)H0k = 0

(5.87)Hxk = D sin kx = 0

(5.88)Hyk = D sin ky = 0

(5.89)Hzk = -2 t cos kx - 2 t cos ky - m = -4 t - m < 0

Therefore, we need to cut the BZ into two areas and use two different wave functions to describe the Bloch waves. They are connected by a
gauge transformation

(5.90)uII
-k = uI

-k ‰Â fk

(5.91)A-
IIk = A-

Ik + “k fk
This is in strong analogy to the magnetic monopole case, where we need to different gauge fields.

Some comments:

† These singularities are NOT physical. If one measures any physical observables, there is no singularity anywhere in the momentum space. 
However. for the wavefunction and the Berry connection, which are not physical observables, there is always some singularity for this 
Hamiltonian.

† The location of these singularity points depends on the gauge (phase) choice. In other words, the location of the singularities has no 
physical meaning either.

† Only one thing about these singularities is physical, its existence. There must be some singularity points. This statement is independent of 
gauge choice and it tells us that the topological index is nonzero. 

Let’s  compute  the  topological  index  for  this  model.  For  these  model,  there  are  four  special  points  which  satisfy  Hx = Hy = 0.  They  are

k
Ø
= 0, 0, kØ = p, p, kØ = 0, p and k

Ø
= p, 0. At these four points, the values of Hz are: Hz = -4 t - m, 4 t - m, -m and -m respectively.

5.2.2. case I: m < -4 t

If m < -4 t, all the four special points has Hz > 0. So we can use uII
-k for the whole Brillouin zone, and there is no singularity points.

(5.92)uII
-k =

1

N I
Hzk - HØ k
Hxk + ÂHyk

Then we can get Berry connection

(5.93)A-
II = -Â uII

-k ∑k uII
-
k

The Berry curvature for the lower band is

(5.94)W- = “ μA-

Thus. the total Berry curvature (2p times the Chern number) is

(5.95)
BZ
„ k W- =

BZ
„ k “ μA- = 

∑BZ
„ k A- = 0

So, the Chern number is zero

(5.96)C =
1

2 p


BZ
„ k W- = 0.

5.2.3. Marginal case: m = -4 t

Hxk = Hyk = Hzk = 0 at k = p, p
Because the gap between the two bands is
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(5.97)Dk = E+ - E- = 2 HØ k
Dk = 0 at k = p, p.
The gap closes at  k = p, p, i.e. the two energy bands touch with each other at k = p, p. This gives us a Dirac point. Here, the system is not
an insulator, but a metal (a semi-metal). So we cannot define a topological index.

Remember that we showed early on, to change the topology of an insulator, one need to close the gap. And here is the gap closing.

5.2.4. case II: -4 t < m < 0

For  -4 t < m < 0,  Hz < 0  at  k = 0, 0,  and  Hz > 0  for  the  other  three  points  k = 0, p,  p, 0  and  p, p.  Therefore,  we  need  two  wave-
functions. First, we draw a small circle around the origin. Inside this small circle, which we will call region DI , we use

(5.98)uI
-k = 1

N I
Hzk - HØ k
Hxk + ÂHyk

Outside the circle, which we will call region DII, we choose

(5.99)uII
-k =

1

N I
Hzk - HØ k
Hxk + ÂHyk

The wavefunctions for these two regions are connected by a gauge transformation

(5.100)uII
-k = uI

-k ‰Â fk
And the Berry connection are related also by the same gauge transformation.

(5.101)A-
IIk = A-

Ik + “k fk
The total Berry curvature (2p times the Chern number) is

(5.102)


BZ
„ k W- =  

DI

„ k “ μA-
I +  

DII

„ k “ μA-
II = 

∑DI

„ k A-
I + 

∑DII

„ k A-
II = 

∑DI

„ k A-
I - 

∑DI

„ kA-
II =


∑DI

„ kA-
I - A-

II = -
∑DI

„ k “k fk = -
0

2 p

„ q ∑q f = -fq = 2 p - fq = 0 = fq = 0 - fq = 2 p

We know that f q = 0 - fq = 2 p is quantized

(5.103)fq = 0 - fq = 2 p = 2 p n

Therefore, the Chern number is quantized. For the model we considered here:

(5.104)H0k = 0

(5.105)Hxk = D sin kx
(5.106)Hyk = D sin ky
(5.107)Hzk = -2 t cos kx - 2 t cos ky - m

If we choose DI  to be a very small circle with radius k~0, then around the circle, we can expand everything as a power series of small k.

(5.108)Hxk = D sin kx º D kx + Ok2
(5.109)Hyk = D sin ky º D ky + Ok2
(5.110)Hzk = -2 t cos kx - 2 t cos ky - m = -2 t - m + Ok2

(5.111)‰Â fk =

Hz+ HØ k
Hxk+ÂHyk

Hz+ HØ k
Hxk+ÂHyk

=

1

Hxk+ÂHyk
1

Hxk+ÂHyk

=
Hxk + ÂHyk
Hxk + ÂHyk

=
D kx + Â D ky

D kx + Â D ky

=
kx + Â ky

kx + Â ky

=
k ‰Â q

k ‰Â q
=

1

‰Â q
= ‰-Â q
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Here, we transfer kx + Â ky into polar coordinate, which is k ‰Â q. This result tells us that

(5.112)fk = -q
Therefore,

(5.113)
BZ
„ k W- = fq = 0 - fq = 2 p = 0 - -2 p = 2 p

So,

(5.114)C =
1

2 p


BZ
„ k W- = 1

This is a topological insulator with C = 1.

5.2.5. Marginal case: m = 0

The gap closes at k = 0, p and p, 0. The system is not an insulator, so we cannot define the Chern number.

5.2.6.  case III: 0 < m < 4 t

For 0 < m < 4 t, Hz > 0 at k=(p,p), and Hz < 0 for the other three points. Here,we can draw a small circle centered at (p,p) to cut the system into
two parts.  Inside the circle, near (p,p),  we use uII  and outside the circle, near (0,0) we use uI .  Same as case II,  we get a topological insulator
with C = 1.

5.2.7. Marginal case: m = 4 t

The gap closes at k = p, p. Not an insulator.

5.2.8.  case IV: m > 4 t

All the four special points has Hz < 0. So we just use uI  for the whole BZ. No singularity, and thus C = 0.

5.2.9.  the top band?

The top band has the opposite Chern number C+ = -C-. This is because for any tight-binding models, the total Chern number for all the bands
is always 0. So here, we have C+ + C- = 0.

5.2.10.  Summary
† This model has four phases. Two topological phases with C=+1 and two trivial insulator phase with C=0.

† A topological phase and a trivial insulator phase are always separated by a phase transition, which is known as a topological phase 
transition.
† Across the topological phase transition, the topological index changes its value

† Across a topological transition, the insulating gap closes and then reopens (generically true)

† Gap closing is the necessary condition for a topological transition, but it is not sufficient. One may close and reopen the gap without 
changing the topological index. e.g. the m=0 point here.

5.3. The model of Haldane on a honeycomb lattice

5.3.1. the Honeycomb lattice (graphene)
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Fig. 1. a honeycomb lattice.

Two sites per unit  cell  (two sublattices) a  and b  (red and black respectively).  The green arrow indicates the lattice vectors v
Ø

1  and v
Ø

2.  If  we

shift the lattices by m v
Ø

1 + n v
Ø

2 with m and n being integers, the lattice is invariant.

(5.115)V r
Ø = V r

Ø
+ m v

Ø
1 + n v

Ø
2

Define a to the length of the nearest-neighbor (NN) bonds. Then we can show that v
Ø

1 =  3 a, 0 and v
Ø

2 = - 3 2 a, 3 2 a. If we only

consider hoppings between the nearest-neighbor (NN) sites, the Hamiltonian is

(5.116)H = -t 
<i, j>

ai
† b j - t 

<i, j>
bi

† a j

where i,j means nearest neighbors.

5.3.2. Band structures

There are three type of NN bonds: (1) along the y axis with q=p/2, (2) along q=p/2+2p/3=7p/6, (3) along q=p/2+4p/3=11p/6, and we need to
write them out separately.

(5.117)H = -t 
i

a
r
Ø

i

† b
ri+e

Ø
1
- t 

i
a

r
Ø

i

† b
ri+e

Ø
2
- t 

i
a

r
Ø

i

† b
ri+e

Ø
3
+ h.c.

with

(5.118)e
Ø

1 = 0, a

(5.119)e
Ø

2 = -
3

2
a, -

a

2

(5.120)e
Ø

3 =
3

2
a , -

a

2

Here the sum i sums over all unit cells (or say all red sites). If we go to the momentum space, by performing the 2D Fourier transformation, 

(5.121)ak =
1

N


i
ai ‰Â k

Ø

ÿr
Ø

(5.122)ai =
1

N


k
ak ‰

-Â k
Ø

ÿr
Ø

(5.123)bk =
1

N


i
ai ‰Â k

Ø

ÿr
Ø

(5.124)bi =
1

N


k
ak ‰

-Â k
Ø

ÿr
Ø
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the first term in the Hamiltonian becomes

(5.125)

-t 
i

ari
† bri+e1 = -

t

N


i


k


k'
ak

† ‰Â k
Ø

ÿri
Ø

bk' ‰
-Â k'

Ø

ÿri
Ø
+e1
Ø  =

-t 
k


k'
ak

† bk' ‰
-Â k'

Ø

ÿe1
Ø 1

N


i
‰
Â k

Ø

-k'
Ø

ÿri
Ø

= -t 
k


k'
ak

† bk' ‰
-Â k'

Ø

ÿe1
Ø

dk,k' = -t 
k

ak
† bk ‰

-Â k'
Ø

ÿe1
Ø

Notice that, as we proved early on, we get a phase factor expÂ k
Ø
ÿ r
Ø

a - r
Ø

b, which only depends on the separation between a and b sites. If we

repeat the same procedure for the other two bonds, we get

(5.126)

H = -t 
i

ari
† bri+e1 - t 

i
ari

† bri+e2 - t 
i

ari
† bri+e2 + h.c.

= -t 
k

ak
† bk ‰

-Â k
Ø

ÿe1
Ø

+ ‰-Â k
Ø

ÿe2
Ø

+ ‰-Â k
Ø

ÿe3
Ø

- t 
k

bk
† ak ‰

Â k
Ø

ÿe1
Ø

+ ‰Â k
Ø

ÿe2
Ø

+ ‰Â k
Ø

ÿe3
Ø

=
k
 ak

† bk
† 

0 H12k
Ø

H21k
Ø 0

 ak

bk


(5.127)H12k
Ø = -texp-Â k

Ø
ÿe1
Ø  + exp-Â k

Ø
ÿe2
Ø  + exp-Â k

Ø
ÿe3
Ø 

(5.128)H21k
Ø = H12k

Ø* = -texpÂ k
Ø
ÿe1
Ø  + expÂ k

Ø
ÿe2
Ø  + expÂ k

Ø
ÿe3
Ø 

The kernel of the Hamiltonian:

(5.129)Hk
Ø =

0 H12k
Ø

H21k
Ø 0

The eigenvalues of H(k) gives the dispersion relation.

(5.130)e≤k
Ø = ≤ H12k

Ø = ≤ t 3 + 2 cos 3 kx a + 4 cos
3

2
kx a Cos

3

2
ky a
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Fig. 2. The contour plot of the energy dispersion for the lower band (e- as a function of kx and ky). The red dash lines mark the first BZ, which is a hexagon.

The  dispersion  e≤  is  a  periodic  function  of  k
Ø

 space  (the  hexagon  repeats  itself  in  the  figure  shown  above).  For  the  lower  band,  its  energy
minimum is located at k = 0. The maximum of e-  is reached at the corners of the BZ. The first BZ is a hexagon. It has six corners. However,
due  to  the  periodic  structure  in  k-space,  the  three  corner  points  with  q=0,  q=2p/3  and  q=4p/3  are  the  same point  (their  momenta differ  by  a
reciprocal  vector).  Similarly,  the  three  corners  with  q=p,  q=p+2p/3  and q=p+4p/3  are  the  same point.  Therefore,  there  are  only  two different
corner points and they are known as the K and K’ points, where

(5.131)K =
4 p

3 3 a
, 0

and

(5.132)K ' = -
4 p

3 3 a
, 0

For most of the momentum points, one of the two bands has positive energy e+ > 0 and the other one has negative energy e- < 0. However at
the corner of the BZ, K and K’, the two bands are degenerate e+ = e- = 0.

(5.133)

e≤K
Ø = ≤ H12K

Ø = ≤ t 3 + 2 cos 3 kx a + 4 cos
3

2
kx a Cos

3

2
ky a =

≤ t  3 + 2 cos 3
4 p

3 3 a
a + 4 cos

3

2

4 p

3 3 a
a Cos

3

2
μ0 =

≤ t 3 + 2 cos
4 p

3
+ 4 cos

2 p

3
= ≤ t 3 + 2 μ -

1

2
+ 4 μ -

1

2
= 3 - 3 = 0

Two bands have the same energy at K and K’, and they are in fact band crossing points.
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Fig. 3. The energy dispersion for both bands (e≤ as a function of kx and ky ) in the first BZ (within the red dash lines mark in the figure above).

Near K or K’ points, the energies of the two bands are linear functions of momentum e≤ ∂ ≤ k - K. To see this, we expand e≤k
Ø near k

Ø
~K
Ø

and k
Ø
~K '

Ø

(5.134)

e≤k
Ø = e≤K

Ø
+ q
Ø = ≤ t  3 + 2 cos 3

4 p

3 3 a
+ qx a + 4 cos 3

2

4 p

3 3 a
+ qx a Cos

3

2
qy a =

≤
3

2
t a qx

2 + qy
2 + Oq2 = ≤ 3

2
t a q + Oq2

-2.6 -2.4 -2.2

-0.20.00.2

-0.5

0.0

0.5

Fig. 4. A zoom in to the Dirac point.

Q: Fermions with linear dispersion e ∂ k. What are they?

A: A Massless Dirac fermion.

Near the K point, we have

(5.135)Hk = HK + q = 3

2
t a

0 qx - Â qy

qx + Â qy 0
+ Oq2 º 3

2
t a qx sx + qy sy = c q

Ø
ÿs
Ø

Near the K’ point, we have

(5.136)Hk = HK ' + q = -3

2
t a

0 qx + Â qy

qx - Â qy 0
+ Oq2 º -3

2
t a qx sx - qy sy = -c q

Ø
ÿ sx s

Ø
sx

Here c is the “speed of light”. Each of them is a Weyl fermion. These two Weyl fermions with opposite chirality forms a Dirac fermion.

Dirac fermions we learned in quantum mechanics:

(5.137)Â ∑ty =
0 c q

Ø
ÿs
Ø

c q
Ø
ÿs
Ø

0
y

If one make an unitary transformation (changing the basis, which doesn’t change any physics)
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y ' =

0
1

2

1

2
0

1

2
0 0

1

2

0 -
1

2

1

2
0

- 1

2
0 0

1

2

y

The equation turns into

(5.139)Â ∑ty ' =
-c q

Ø
ÿ sx s

Ø
sx 0

0 c q
Ø
ÿs
Ø

y '

The Dirac point (band crossing points) in a honeycomb lattice is stable as long as the space inversion symmetry r Ø -r  and the time reversal
symmetry  t Ø -t  are  preserved.  We  will  come  back  to  this  point  latter.  No  matter  how  one  perturb  the  systems  (e.g.  adding  longer-range
hoppings), the Dirac point is always there as long as the two symmetries mentioned above are preserved. For graphene, the lower band is filled
and the upper band is empty, which is known as “half-filling”.  The “half” here means that the number of electrons Ne  over the number of sites
Ns is Ne  NS = 1 2. However, it is worthwhile to notice that the ratio between Ne and the number of unit cells N  is 1, because there are two sites
in each unit cell. So one of the two bands are totally filled. By gating, one can tune the Fermi energy slightly away from the Dirac point, which
is known as a dopped graphene.

5.3.3. Aharonov–Bohm effect and complex hopping

Q: Can hopping strength t be complex?

A: Yes, and the phase can come from the Aharonov–Bohm effect in the presence of a magnetic field or spin-orbital couplings.

The Aharonov–Bohm effect: if one moves a charged particle around a closed contour. The phase difference between the final and initial states
is proportional to the magnetic flux enclosed by the contour f = e Ñ   B ÿ„S = e Ñ  A.„ l

Now, let’s consider a discrete lattice. Consider three sites a, b and c. The hopping strength between these three sites are tab  tbc  and tca  respec-
tively. If a particle hops from a to b and then to c, the hopping strength around this loop is:

(5.140)tab tbc tca = tab ‰Â fab * tbc ‰Â fbc * tca ‰Â fca = tab tbc tca ‰Â fab+fbc+fca

The phase picked up by the electron is:

(5.141)fab + fbc + fca =
e

Ñ
  B ÿ„ S

If B is nonzero inside the triangle formed by these three sites, the phase for these hoppings are nonzero.

Please  notice  that  (1)  tab  and  tba  has  opposite  phase,  due  to  the  Hermitian condition  (One  can  also  prove  this  using  the  Fermi’s golden  rule,
which says that the tunneling amplitude from the state |f> to |i> is the complex conjugate of the tuning amplitude from |i> to |f>).

(5.142)tab = tba
*

(2) The individual phases for tab, tbc  and tca  have no physical meaning and their phases depend on the gauge choice. However, the total phase
around a loop is independent of gauge, and in fact it is a physical observable, i.e. the magnetic flux.

Proof:

We know that the phase of the hopping term is

(5.143)fab = e Ñ
a

b

A ÿ„ l

Underage transformation: A Ø A + “ c

(5.144)fab Ø fab ' = e Ñ
a

b

A + “ c ÿ„ l = e Ñ
a

b

A ÿ„ l + e Ñ
a

b

“ cÿ„ l = fab + cb - ca
e

Ñ

Obviously, fab is not a physical observables, since it relies on the gauge choice. However, the total phase around a loop is different. It is a loop
integral of A, which is gauge independent and the physics meaning of this Integral is the magnetic flux.
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(5.145)
fab + fbc + fca =

e Ñ A ÿ„ l Ø fab ' + fbc ' + fca ' = e Ñ A + “ c ÿ„ l = e Ñ A ÿ„ l + e Ñ “ cÿ„ l = e Ñ A ÿ„ l = fab + fbc + fca

The complex hopping strength  induced by B  fields  breaks  the  time-reversal  symmetry because  B Ø -B  under  time reversal.  (in  other  words,
under time-reversal one needs to flip the sign of all these phases).

5.3.4. Complex next-nearest-neighbor (NNN) hoppings (breaking T-symmetry using B fields)
Ref:  F.  D.  M.  Haldane,  Model  for  a  Quantum  Hall  Effect  without  Landau  Levels:  Condensed-Matter  Realization  of  the  “Parity  Anomaly”,
Phys. Rev. Lett. 61, 2015–2018 (1988).

Now  let  us  add  some  NNN  hoppings  and  assume  their  hopping  amplitudes  are  complex.  For  simplicity,  we  choose  the  amplitude  and  the
complex phase to be the same for all NNN bonds. If the hopping is along the arrows marked in the figure, the phase of the hopping strength is
f. If one hops in the opposite direction, the phase is -f.

Fig. 5. The model of Haldane.

This complex phases can be realized (in theory) by applying a staggered B field, which is positive near the center of each hexagon and negative
near the edges. The NNN hoppings are from an a-site to another a-site (and from a b-site to another b-site). For a-to-a hoppings, there are three
different types of NNN bonds, along q=0, 2p/3 and 4p/3. Same is true for b-to-b hoppings. So the Hamiltonian is:

(5.146)HNNN = -t ' ‰Â f 
i

ari
† ari+v1 - t ' ‰Â f 

i
ari+v1

† ari-v3 - t ' ‰Â f 
i

ari-v3
† ari + h.c.+a Ø b and f Ø -f

Here, v1 and v2 are marked on the first figure of this section with v
Ø

1 =  3 a, 0 and v
Ø

2 = - 3 2 a, 3 2 a. v
Ø

2 = - 3 2 a, -3 2 a

(5.147)

HNNN = -t ' ‰Â f 
i

ari
† ari+v1 - t ' ‰Â f 

i
ari+v1

† ari-v3 - t ' ‰Â f 
i

ari-v3
† ari + h.c.+a Ø b and f Ø -f

= -t ' ‰Â f 
k

ak
† ak ‰-Â kÿv1 + ‰-Â kÿv2 + ‰-Â kÿv3 + h.c.+a Ø b and f Ø -f

= -2 t ' 
k

ak
† ak cosk ÿv1 - f + cosk ÿv2 - f + cosk ÿv3 - f -

2 t ' 
k
bk

† bk cosk ÿv1 + f + cosk ÿv2 + f + cosk ÿv3 + f

(5.148)H = HNN + HNNN =
k
 ak

† bk
†  H11k H12k

H21 k H22 k  ak

bk


(5.149)H12k = -t ‰-Â k'
Ø

ÿe1
Ø

+ ‰-Â k'
Ø

ÿe2
Ø

+ ‰-Â k '
Ø

ÿe3
Ø
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(5.150)H21k = H12k* = -t ‰Â k'
Ø

ÿe1
Ø

+ ‰Â k'
Ø

ÿe2
Ø

+ ‰Â k'
Ø

ÿe3
Ø

(5.151)H11k = -2 t ' cosk ÿv1 - f + cosk ÿv2 - f + cosk ÿv3 - f
(5.152)H22k = -2 t ' cosk ÿv1 + f + cosk ÿv2 + f + cosk ÿv3 + f

If one computes the eigenvalues of H(k), one find that the two bands never cross with each other for any k (if t’ is non-zero and f is NOT an
integer multiplied by p).

-2
-1

0
1

2

-2 0 2

-2

0

2

Fig. 6. The energy dispersion for both bands (e≤ as a function of kx and ky ) in the first BZ (within the red dash lines mark in the figure above).

Using Pauli matrices:

(5.153)H = H0k I + Hxksx + Hyksy + Hzksz

(5.154)H0 =
H11k + H22k

2
= -2 t ' cos f cosk ÿv1 + cosk ÿv2 + cosk ÿv3

(5.155)Hz =
H11k - H22k

2
= -2 t ' sin f sink ÿv1 + sink ÿv2 + sink ÿv3

(5.156)Hx = ReH21k = -tcosk
Ø
ÿe1
Ø  + cosk

Ø
ÿe2
Ø  + cosk

Ø
ÿe3
Ø 

(5.157)Hy = ImH21k = -tsink
Ø
ÿe1
Ø  + sink

Ø
ÿe2
Ø  + sink

Ø
ÿe3
Ø 

The energy dispersions:

(5.158)e≤k
Ø = H0k

Ø ≤ Hxk
Ø2

+ Hyk
Ø2

+ Hzk
Ø2

The gap between the two bands:

(5.159)e+k
Ø - e-k

Ø = 2 Hxk
Ø2

+ Hyk
Ø2

+ Hzk
Ø2

At K or K’, Hxk
Ø = Hyk

Ø = 0 and the gap is:

(5.160)e+k
Ø - e-k

Ø = 2 Hxk
Ø2

+ Hyk
Ø2

+ Hzk
Ø2

= 2 Hzk
Ø
= K = 6 3 t ' sin f

In fact, at the K point,

(5.161)Hz = -3 3 t ' sin f

at the K’ point

(5.162)Hz = 3 3 t ' sin f

They have opposite signs (as long as f is not n p). Based on what we learned last time, this means that one cannot define the wavefunction in
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the whole BZ. We need to cut the systems into two regions. The region I contains the K point, the region II contains the K’ points. And we need
to use different eigenvectors for these two regions. Using the same method we learned in the last lecture, one finds that the Chern number here
is ±1.

Here, we can draw a small circle around the K point. Inside the circle, we use wavefunction uI. Outside it, we use uII.

(5.163)‰Â fk =

Hz+ HØ k
Hxk+ÂHyk

Hz+ HØ k
Hxk+ÂHyk

=
Hxk + ÂHyk
Hxk + ÂHyk

=
qx + Â qy

qx + Â qy

=
1

‰Â q
= ‰-Â q

5.3.5. Potential energy (breaking inversion symmetry)

Let’s keep NNN hoppings to be zero for now and add some potential energy to the Hamiltonian.

(5.164)HPotential = V + M  
i

ai
† ai + V - M  

i
bi

† bi = V N + M 
i

ai
† ai - M 

i
bi

† bi

The V part (average potential between a and b sites) just adds a constant term to the energy, since the total particle number N is conserved. So
we can drop the V term and only consider the difference between the potential energies at a and b sites (M).

In k-space

(5.165)HPotential = M 
i

ai
† ai - M 

i
bi

† bi = M 
k
ak

† ak - M 
k

bk
† bk =

k
 ak

† bk
†  M sz ak

bk


It adds a sz component to the Hamiltonian. Same as the NNN complex hopping, this term also opens a gap at the Dirac points. At K and K’, H
now has the same sign (H = M  for any k). So, we can use one wave-function for the whole BZ and thus the system is a trivial insulator. 

Q: What will happen if we have both HPotential and HNNN?

A: We just need to look at the signs of Hz at K and K’ points. If they have the same sign, we can use one wavefunction to cover the whole BZ,
so C = 0 (trivial insulator). If they have opposite signs, the system is a topological insulator with C=±1

At the K point,

(5.166)Hz = M - 3 3 t ' sin f

at the K’ point

(5.167)Hz = M + 3 3 t ' sin f

Therefore, as long as M < 3 3 t ' sin f  , the system is an topological insulator (Hz  flips sign). If M > 3 3 t ' sin f , Hz  is always

positive (or negative) and thus the system is topologically trivial. The marginal case M = 3 3 t ' sin f  is a topological transition, where

Hz = 0 at either the K point or the K’ point. Because Hx = Hy = 0 at these two points, the gap must be zero at one of the two points.

Remarks:

† The model of Haldane is the first example of a topological insulator beyond quantum Hall effect.

† It demonstrates that topological insulator is a generic concept, which may appear in any insulating systems (NOT just quantum Hall).

† It also demonstrates that as long as the topological index is nonzero, one will observe all the topological phenomena expected for a 
quantum Hall state, including the quantized Hall conductivity and the existence of the edge states.

† The key differences between the model of Haldane and the quantum Hall effects are (1) the B field is on average zero in the model of 
Haldane while the QHE has a uniform B field and (2) there is a very strong lattice background in the model of Haldane while the QHE 
requires weak lattice potential.

† Systems similar to the Haldane’s model are known as topological Chern insulators or Chern insulators (average B is 0 and have a strong 
lattice potential). But sometimes, Chern insulators are also used to refer to the quantum Hall effect.

† The model of Haldane is also the foundation to explore more complicated and exotic topological states. For example, the time-reversal 
invariant topological insulators was first proposed using a modified Haldane’s models, which we will study latter in the semester.
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5.4. Some symmetry properties of the Berry curvature F and the Chern number.

5.4.1. time-reversal transformation T and time-reversal symmetry

In  this  section,  we  consider  systems  with  time-reversal  symmetry  and  shows  that  in  the  presence  of  the  time-reversal  symmetry,  the  Chern
number must be zero. Therefore, to get a topological insulator with nonzero C, one must break the time-reversal symmetry.

Dispersion relation

Dispersion relation under time-reversal transformation:

(5.168)T enk = en-k

This is because T turns k
Ø

 into -k
Ø

. There are two ways to see that T turns k
Ø

 into -k
Ø

.

† k
Ø

 is the momentum. Under time-reversal, velocity changes sign, so does the momentum.

† k
Ø
= -Â ∑r. Under T, ∑r remains invariant. However, because T is an anti-unitary transformation (which changes a complex number to its 

complex conjugate), it flips the sign of Â. Therefore, T k
Ø
= T -Â ∑r = Â ∑r = -k

Ø
.

If the system is time-reversally invariant, the time-reversal symmetry implies that enk is invariant under time-reversal transformation

(5.169)T enk = enk
Compare the two equations, we have:

(5.170)enk = en-k

Bottom line: for systems with time-reversal symmetry, the dispersion is an even function of the momentum k
Ø

.

Bloch wave function yn,kr = un,kr „ ‰ k r

Bloch wave under time-reversal transformation:

(5.171)T un, kr = un,-kr*

Here, T changes k  to -k. In addition, because un,kr is in general a complex function, T changes the function to its complex conjugate. If the

system is time-reversally invariant, 

(5.172)T un, kr = ‰Â fk un, kr
By comparing the two equations above, we found that for a system with time-reversal symmetry, 

(5.173)un,-kr* = ‰Â fk un, kr
This arbitrary phase is here because wavefunctions are defined up to an arbitrary phase

Berry connection Ank = -‰ un,k —k un,k
The Berry connection is defined as:

(5.174)Ank = -Â un,k “k un,k = -Â „ r
Ø

un,kr
Ø* ∑k un,kr

Ø

The under time-reversal, the new Ank is defined as

(5.175)

TAnk = -Â T un,k “k T un,k =
-Â „ r

Ø
un,-kr

Ø ∑k un,-kr
Ø* = Â „ r

Ø
∑k un,-kr

Ø un,-kr
Ø* = -Â „ r

Ø
un,-kr

Ø* ∑-k un,-kr
Ø = -Â un,-k “-k un,-k = An-k

If the system has time-reversal symmetry

(5.176)TAnk = Ank + “k ck
So we have

(5.177)An-k = Ank + “k ck
Bottom line: For systems with time-reversal symmetry, An k and An k differs by a gauge transformation “k ck.
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Berry curvature Fnk = -‰eij ∂i un,k ∂ j un,k
The Berry curvature is defined as:

(5.178)Fnk = -Âeij ∑ki un,k ∑kj un,k = -Â eij  „ r
Ø
∑ki un,kr

Ø* ∑kj un,kr
Ø

The under time-reversal, the new Fnk is defined as

(5.179)

TFnk = -Âeij ∑ki Tun,k ∑kj Tun,k =
-Â eij  „ r

Ø
∑ki Tun,kr

Ø* ∑kj Tun,kr
Ø = -Â eij  „ r

Ø
∑ki un,-kr

Ø ∑kj un,-kr
Ø* = -Â eij  „ r

Ø
∑kj un,-kr

Ø* ∑ki un,-kr
Ø

If we swap i and j here

(5.180)TFnk = -Â eji  „ r
Ø
∑ki un,-kr

Ø* ∑kj un,-kr
Ø = Â eij  „ r

Ø
∑ki un,-kr

Ø* ∑kj un,-kr
Ø = -Fn-k

If the system has time-reversal symmetry

(5.181)TFnk = Fnk
So we have

(5.182)Fn-k = -Fnk
Bottom line: For systems with time-reversal symmetry, Fnk is an odd function of k

Because the integral of an odd function over the whole Brillouin zone must be zero, (the contribution from k and -k cancels each other),
the Chern number for a time-reversally invariant system must be C=0.

The Chern number C = 1

2 p
  ‚ kFnk

(5.183)TC = T 1

2 p
  „ kx „ ky Fnk = -

1

2 p
  „ kx „ ky Fn-k = - 1

2 p
  „ kx „ ky Fnk = -C

If the system has time-reversal symmetry,

(5.184)TC = C,

So we have C = -C, which means C = 0.

Bottom line:  to  have  a  nontrivial  Chern number,  the  system must  break the time-reversal  symmetry  (using  external  B field  or  some
other method).

5.4.2. Space-inversion transformation I and space-inversion symmetry

Space inversion transformation I turns a vector r
Ø

 into -r
Ø

. It also changes k
Ø

 into -k
Ø

, which is similar to T. However, I is an unitary transforma-
tion, while T is anti-unitary.

Dispersion relation

Dispersion relation under time-reversal transformation:

(5.185)Ienk = en-k
If the system is invariant under space inversion

(5.186)I enk = enk
Compare the two equations, we have:

(5.187)enk = en-k

Bottom line: For systems invariant under space inversion, the dispersion is an even function of the momentum k
Ø

. 

If one want make a system where the dispersion is NOT an even function, one need to break both space inversion symmetry and time-
reversal symmetry.

90   Phys620.nb



Bloch wave function yn,kr = un,kr „ ‰ k r

(5.188)I un, kr = un,-kr
If the system is invariant under space inversion

(5.189)I un, kr = ‰Â fk un, kr
By comparing the two equations above, we found that for a system with time-reversal symmetry, 

(5.190)un,-kr = ‰Â fk un, kr
Berry connection Ank = -‰ un,k —k un,k

(5.191)IAnk = An-k
If the system is invariant under space inversion

(5.192)IAnk = Ank + “k ck
So we have

(5.193)An-k = Ank + “k ck
Bottom line: For systems invariant under space inversion, An k and An k differs by a gauge transformation “k ck.
Berry curvature Fnk = -‰eij ∂i un,k ∂ j un,k

(5.194)IFnk = Fn-k
If the system is invariant under space inversion

(5.195)IFnk = Fnk
So we have

(5.196)Fn-k = Fnk
Bottom line:  For systems invariant under space inversion, Fnk is an even function of k

Time-reversal symmetry tell us Fnk is an odd function of k. If system have both T and I symmetry, F must be both an even function and an
odd function. So F=0 at any k point.

The Chern number C = 1

2 p
  ‚ kFnk

(5.197)IC = C

5.4.3. I T transformation and IT symmetry

Under IT,

(5.198)ITFnk = I-Fn-k = -Fnk
If system is invariant under IT,

(5.199)ITFnk = -Fnk
So, we have 

(5.200)Fnk = -Fnk
Bottom line: For systems invariant under IT, Fnk = 0 at every k.

For T symmetry, the integral of F is zero (C=0), but F can be nonzero at each k point.

For IT symmetry, F is zero at every single k point. This is a stronger statement!

Please notice that all these conclusions assumes that the system is gapped. For gapless systems with IT symmetry, F can actually be nonzero
and quantized, which will be discussed in the next section.
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5.5. p flux and Dirac points

5.5.1. magnetic field, Aharonov–Bohm effect and magnetic p- flux

Q: Why B changes sign under T?

A: Many ways to see it. Here, I use the A-B effect.

In the presence of  B  field,  Aharonov and Bohm tells  us  that  if  we move a  charged-particle  around a closed loop,  the electron will  pick up a
phase, and the phase is the total magnetic field enclosed by the loop (times e/Ñ)

(5.201)f = e Ñ  B ÿ„S = e Ñ A.„ l

Under time-reversal ‰Â f turns into ‰-Â f, because time-reversal is anti-unitary. So the A-B phase changes sign 

(5.202)Tf = -f
In other words, the integral of B changes sign

(5.203)T  
D

B ÿ„S = - 
D

B ÿ„ S

Because this equation is true for any region D, we have B = -B. 

If a system has time-reversal symmetry, everything must remain the same before and after we flip the arrow of time, including the A-B phase

(5.204)‰Â f = ‰-Â f

Therefore, we have f = -f. So we have f=0 for any region D, which implies that B = 0.

Q: Do we really need to have B = 0 to preserve the time-reversal symmetry.

A: NO!

This is because phase is only well-define up to mod 2p. The time-reversal symmetry requires ‰Â f = ‰-Â f, which does NOT implies f = -f. In
fact, as long as f = -f + 2 n p, the A-B phase will be the same before and after the time-reversal transformation. This means that to preserve the
time-reversal symmetry we just need f = n p while n don’t need to be 0. So we need to have  D

B ÿ„ S = n p for any D. This means that B can

contains some delta functions.

(5.205)B =
Ñ

e


i
ni p dr - ri

For this B field, the integral of B in region D is just

(5.206)f = e Ñ  B ÿ„S = 
i

'
ni p

Here the sum i
'  is over all ri  inside D. A delta function in B  is a magnetic flux, which is known as a n×p-flux. These fluxes don’t break the

time-reversal symmetry. In addition, it worthwhile to point out that for the A-B phase is only well defined up to mod 2p. So all the 2np fluxes
give the same A-B phase, which is 0. All the (2n+1)p fluxes give the same A-B phase, which is p.

5.5.2. Berry flux

We  can  do  the  same  thing  for  the  Berry  curvature  F(k).  If  we  goes  around  a  contour  in  the  k-space,  the  phase  change  of  the  Bloch  wave
function around this contour is 

(5.207)f =  
D

F „ k2

This is known as the Berry phase.

Under IT, D is invariant so

(5.208)IT f = IT  
D

F k „ k2 = - 
D

F k „ k2 = -f

If the system is IT invariant, we must have f=-f (but up to mod 2p).
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(5.209)f = -f + 2 n p

so

(5.210)f = n p

As a result, if we have IT symmetry,  D
F „ k2=np for any region D. So F must be either 0 or some delta functions.

(5.211)F k =
i
ni p dk - ki

These delta functions are known as Berry fluxes. Because the Berry phase is only well defined up to mod 2p, we have in general two types of
Berry fluxes: 0 and p. And a p flux is a Dirac point.

5.5.3. Dirac point

Near a Dirac point, the kernel of the Hamiltonian is:

(5.212)H = vF 0 kx - Â ky
kx + Â ky 0



Using polar coordinates

(5.213)H = vF k
0 ‰-Â f

‰Â f 0

The eigenvalues for this matrix is e≤ = ≤vF k. The eigenvectors are:

(5.214)u+ =
1

2

‰-Â f

1
and u- =

1

2

-‰-Â f

1

The Berry connection in the polar coordinates has two components, radius and angle.

(5.215)A+k = -Â u+ ∑k u+ = 0

(5.216)A+f = -
Â

k
u+ ∑f u+ = -

Â

k

1

2
 -‰Â f 1  ∑f

1

2

-‰-Â f

1
= -

Â

k

1

2
 ‰Â f 1  -Â ‰-Â f

1
= -

1

2 k

Let’s choose a small circle around the Dirac point, the flux through this circle is:

(5.217)c =   F „ k =  A ÿ„ k = 
0

2 pAf k „f = -
0

2 p 1

2 k
k „f = -

1

2


0

2 p

„f = -p

5.5.4. Why is a Dirac point stable?

This is because the Berry fluxes are very stable. If one has TI symmetry, the Berry flux is quantized to integer values. Once its value is fixed
(say p), no perturbation can change it. The only thing that can change continuously is the location of the delta functions. In other words, without
break the TI symmetry, one can only move the Dirac points around in the k-space, but they cannot just disappear. To get ride of Dirac points,
one need to move two Dirac points together and let them annihilate each other (let a p flux meet a -p flux, so that we get zero flux). Another
way to get ride of Dirac points is to break either the T or the I symmetry.

5.6. Edge states (numerical calculations)

5.6.1. Why energy is a function of kx and ky

Consider one electron moving in an infinite 2D lattice (for simplicity, we consider a square lattice here). Because the lattice is invariant under
lattice  translations  x Ø x + a and y Ø y + a,  lattice  momentum is  a  good  quantum number  (a  conserved  quantity).  Momentum conservation
means that

(5.218)kx, H = ky, H = 0

In addition, we know kx, ky = 0. With three operators which commute with each other, quantum mechanics tells us that we can find common

eigenstates for all these three operators, and we can use these eigenstates as the basis for the Hilbert space. This set of basis looks like:
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(5.219)yen,kx,ky


This state is the eigenstate of H, kx  and ky  with eigenvalues en, kx  and ky  respectively. Here, one need a sub-index (n) to distinguish different

bands. So we have the band structure:

(5.220)enkx, ky

5.6.2. What if we have an finite system?

To study edge states, we must have an edge. So we cannot use an infinite 2D plan. Let’s consider the simplest case here, a infinitely long stripe.
We assumes that  the system is infinitely long along x,  but it  has a finite  width along y.  Now, the translational symmetry along x is  still  pre-
served. But there is no translational symmetry along y (due to the existence of the edge). So kx is still a good quantum number but ky is NOT.

(5.221)kx, H = 0 but ky, H ∫ 0

So we cannot define common eigenstates for H , kx and ky, but we can still find eigenstates for H  and kx, because they commute with each other.

(5.222)yem,kx


Here,  again,  we  need  an  extra  index  distinguish  different  states  with  the  same kx.  Here  I  emphasize that  m  is  NOT just  the  band  index  n.  It
includes information for both n and ky. So now, energy is a bunch of function of kx

(5.223)emkx
where m = 1, 2, 3 …NS. We have NS  functions of kx. We can draw these NS  functions on the kx - e plane, which gives us NS  curves, which is
our 1D dispersion.

5.6.3. Examples

We consider the model of Haldane for a system with infinite size along x, by finite width along y. The Hamiltonian is invariant under transla-

tions  along  the  x  axis  x Ø x + 3 a,  so  the  x-component  of  the  momentum is  a  conserved  quantity  kx, H = 0.  So  we  can  find  common

eigenstates of kx and H . The system has two edges: one on the top, one at the bottom. We can consider this lattice as a bunch of 1D (horizontal)
lines coupled together, so the width are described by the number of chains one have in this infinite stripe N. For emkx, we have m=1,2,…2 N.
This factor of 2 comes from the fact that we have two sites in each unit cell for a honeycomb lattice.

First, lets consider the case without NNN hopping (graphene, with two Dirac cones). Here, for the first panel, we show emkx for a system with
width N=10 so there are NS = 2 N = 20 lines. The second panel is the same calculation for a system with width N=100 NS = 2 N = 200. The
last panel shows the bulk band structure (side view).
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Fig. 7. the energy spectrum for a infinite-long ribbon (the honeycomb lattice)

The 2D figure of emkx is in some sense the 3D band structure enkx, ky projected onto a 2D plane. We can see here an upper band and a lower

band and 2 Dirac cones. The system is gapless.

Now, let’s consider the topological case, with complex NNN hoppings. The first panel shows the energy dispersion for an infinite stripe and the
second one shows the bulk band structure for an infinite 2D system.
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Fig. 8. the energy spectrum for a infinite-long ribbon  (the model of Haldane)

Here, I choose the parameter f=p/2, tNN = 1 and tNNN = 0.2. As one can see, for the infinite stripe, there are two bands, whose energy spectrum
coincide with the bulk band structure for infinite systems. But in addition, there are two extra lines shown inside the gap, which are the metallic
edge states. By looking at the wavefunctions (see the interactive figures on the course website), one find that one of the in gap state is localized
near the top edge, while the other is localized near the bottom edge. If we consider the momentum region (0,2p), instead of (-p,p), we find that
one  of  the  two edge  states  has  positive  slop  and  the  other  one  has  negative  slop  (left  moving).  Because  the  slop  is  the  velocity  of  electrons
(v = ∑e ∑k), one of the edge states has positive velocity (right moving) while the other one is right moving (negative velocity).
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Fig. 9. the velocity of the edge states
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